

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Two new asterosaponins, archasterosides A and B, from the Vietnamese starfish *Archaster typicus* and their anticancer properties

Alla A. Kicha ^a, Natalia V. Ivanchina ^a, Trinh T. T. Huong ^b, Anatoly I. Kalinovsky ^a, Pavel S. Dmitrenok ^a, Sergey N. Fedorov ^a, Sergey A. Dyshlovoy ^a, Pham Q. Long ^b, Valentin A. Stonik ^a,*

ARTICLE INFO

Article history: Received 18 February 2010 Revised 31 March 2010 Accepted 5 April 2010 Available online 9 April 2010

Keywords: Asterosaponins Glycosides Steroidal aglycons Sulfates Starfish Archaster typicus NMR spectra Cytotoxic activity

ABSTRACT

New asterosaponins archasterosides A (1), B (2), and the known regularoside A (3) were isolated from the Vietnamese starfish *Archaster typicus* and structurally elucidated by extensive NMR techniques and chemical transformations. Compounds 1-3 showed moderate cytotoxic activities against HeLa and mouse JB6 P* Cl41 cell lines. The most active, **2**, induced basal AP-1- and p53-, but not NF- κ B-transcriptional activations in JB6 Cl41 cells.

© 2010 Elsevier Ltd. All rights reserved.

The secondary metabolites from starfish are characterized by a remarkable diversity of different polar steroids, including polyhydroxysteroids and related mono- and biosides as well as toxic steroid oligoglycosides named asterosaponins. Asterosaponins contain $3\beta.6\alpha$ -dihydroxysteroid aglycons with a 9(11)-double bond and sulfate group at C-3. Their carbohydrate chains embrace from four to six monosaccharide units attached to C-6 of an aglycon. These glycosides show a wide spectrum of biological activities, for instance cytotoxic, antiviral, antibacterial, antibiofouling, and antifungal effects. 1

Earlier 10 polyhydroxysteroids from the starfish *Archaster typicus* (order Valvatida, family Archasteridae) were reported.² However, no asterosaponins have been isolated to date from this species. In a continuation of our search for new bioactive polar steroidal compounds from starfish,³ we have examined composition and biological activities of oligoglycoside fraction from this species, collected off Quang Ninh, Vietnam. In this Letter we report the structures of new archasterosides A (1) and B (2), isolated together with a known regularoside A (3), as well as their cytotoxic properties. The ethanol extract of *A. typicus* was subjected to chromatographic separation on columns with Teflon powder Polychrome

1, Si gel, and Florisil. Application of ion-pair HPLC to the obtained oligoglycoside subfractions, using a semipreparative Diasfer-110-C18 (EtOH/ $\rm H_2O/1~M~NH_4OAc$, 55:44:1) and Discovery C18 (MeOH/ $\rm H_2O/1~M~NH_4OAc$, 72:24:1 or 72:27:1) columns yielded 1–3.⁴ Compound 3 was identified by comparison of the NMR and MS data with literature values as regularoside A, originally isolated from the starfish *Halityle regularis*.⁵

The molecular formula of archasteroside A (1) was determined as $C_{59}H_{97}O_{28}SNa$ from the $[M-Na]^-$ molecular anion at m/z1285.5910 (calcd for $C_{59}H_{97}O_{28}S$, 1285.5893) in the negative HRESIMS and the $[M+Na]^+$ sodiated-molecular ion at m/z 1331 in the positive ESIMS. The fragment-ion peaks at m/z 1211 $[(M+Na)-NaHSO_4]^+$ in the positive ESIMS/MS and at m/z 97 [HSO₄] in the negative ESIMS/MS exhibited the presence a sulfate group in 1. The comparison of ¹H and ¹³C NMR spectra of glycosides 1 and 3 suggested that oligosaccharide moieties in both compounds are identical. In the confirmation, the ¹H NMR spectrum of **1** exhibited five signals of anomeric protons at $\delta_{\rm H}$ 4.91, 4.96, 4.82, 5.01, and 5.25 (with coupling constants 7.3–8.0 Hz) correlating in the HSQC experiment with corresponding carbon resonances at δ_{C} 105.0, 103.6, 102.3, 106.9, and 105.9, respectively (Table 1). These data indicated the existence of five monosaccharide units, bonded by β-glycosidic with each other and aglycon. The methyl doublets at $\delta_{\rm H}$ 1.71, 1.46, 1.48, and 1.80 in the $^{1}{\rm H}$ NMR spectrum confirmed the presence of four 6-deoxy sugars.

^a Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100 let Vladivostoku 159, Vladivostok 690022, Russia

b Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nighiado, Caugiay, Hanoi, Viet Nam

^{*} Corresponding author. Tel.: +7 4232 311168; fax: +7 4232 314050. E-mail address: stonik@piboc.dvo.ru (V.A. Stonik).

Table 1 1 H and 13 C NMR data, HMBC, and NOESY correlations of oligosaccharide moiety of 1 and 2

C No.	δ_{C}^{b}	$\delta_{\rm H}{}^{\rm c}$ (J in Hz)	HMBC (H→C)	NOESY (H→H)
Glc				
1	105.0	4.91, d (7.3)	C-6 of aglycon	H-6 of aglycon; H-3, H-5 Glc
2	73.6	3.97, t (8.2)	C-1 Glc	
3	91.6	3.84, t (8.8)	C-2, C-4 Glc; C-1 Qui ²	H-1 Glc
4	69.6	4.04, t (9.6)	, , ,	
5	77.4	3.82, m		H-1 Glc
6	62.2	4.44, dd (2.5, 12.0)		
_		4.27, dd (5.3, 11.9)		
Qui ¹				
1	104.8	4.80, d (8.1)	C-6 of aglycon	H-6 of aglycon; H-3, H-5 Qui ¹
2	73.8	3.95, t (8.1)	C-3 Qui ¹	
3	91.0	3.76, t (8.9)	C-1 Qui ²	H-1 Qui ¹ , H-1 Qui ²
4	74.4	3.52, t (9.2)	C-3 Qui ¹	H-6 Qui ¹
5	71.7	3.67, m		H-1 Qui ¹
6	18.2	1.56, d (6.0)	C-4, C-5 Qui ¹	H-4 Qui ¹
Qui ²		,	,	
1	103.6	4.96, d (7.3)	C-3 Glc for 1 or C-3 Qui ¹ for 2	H-3, H-5 Qui ² ; H-3 Glc for 1 or H-3 Qui ¹ for 2
2	82.5	4.07, t (7.9)	C-1 Qui ² , C-1 Qui ⁴	11 5, 11 5 Qui , 11 5 die 101 1 01 11 5 Qui 101 2
3	75.1	4.11, t (8.8)	C-2 Qui ²	H-1 Qui ²
4	85.6	3.55, t (8.4)	C-2, C-5 Qui ² ; C-1 Qui ³	H-6 Qui ² , H-1 Qui ³
5	71.4	3.88, m	C-3, C-3 Qui , C-1 Qui	H-1 Qui ²
6	18.0	1.71, d (6.0)	C-4, C-5 Qui ²	H-4 Qui ²
	10.0	1.71, ti (0.0)	C-4, C-3 Qui	11-4 Qui
Qui ³ 1	102.3	4.82, d (8.0)	C-4 Qui ²	H-3, H-5 Qui ³ ; H-4 Qui ²
2	84.3		C-3 Qui ³	11-3, 11-3 Qui , 11-4 Qui
	64.3 77.5	3.98, t (8.2)	C-5 Qui	H-1 Qui ³
3		4.10, t (9.1)	6.2.6.5.0.13	
4	75.7	3.60, t (9.0)	C-3, C-5 Qui ³	H-6 Qui ³
5	72.8	3.68, m	0.4.0.5.0.13	H-1 Qui ³
6	17.7	1.46, d (6.0)	C-4, C-5 Qui ³	H-4 Qui ³
Fuc	1000	5.04 1 (7.7)	6.2.0.13	W 2 2 13 W 2 W 5 F
1	106.9	5.01, d (7.7)	C-2 Qui ³	H-2 Qui ³ ; H-3, H-5 Fuc
2	73.7	4.38, dd (7.8, 9.6)	C-1, C-3 Fuc	II.4 B
3	74.9	4.04, dd (3.9, 9.7)		H-1 Fuc
4	72.3	3.97, d (2.5)		H-6 Fuc
5	71.7	3.77, m	C-4 Fuc	H-1 Fuc
6	16.9	1.48, d (6.5)	C-5 Fuc	H-4 Fuc
Qui ⁴			2	
1	105.9	5.25, d (7.4)	C-2 Qui ²	H-3, H-5 Qui ⁴
2	76.3	4.02, t (8.5)		4
3	76.9	4.07, t (8.9)		H-1 Qui ⁴
4	75.5	3.96, t (8.8)		H-6 Qui ⁴
5	73.6	3.69, m		H-1 Qui ⁴
6	17.8	1.80, d (6.5)	C-4, C-5 Qui ⁴	H-4 Qui ⁴

a Measured in C₅D₅N.

The carbon signals of the monosaccharide residues in the ¹³C NMR spectrum of 1 coincided with those of terminal β -D-fucopyranosyl and β-D-quinovopyranosyl units and internal 2-substituted β-D-quinovopyranosyl, 2,4-disubstituted β-D-quinovopyranosyl, and 3-substituted β-D-glucopyranosyl units from the ¹³C NMR spectrum of regularoside A.5 The negative ESIMS/MS of a molecular anion at m/z 1285 $[M-Na]^-$ registered a series of fragment-ion peaks, confirming the structure of a carbohydrate chain in 1. There were peaks with m/z 1139 [(M-Na)-146], 993 [(M-Na)-2 × 146]⁻, 847 [(M-Na)-3 × 146]⁻, 701 [(M-Na)-4 × 146]⁻, due to the losses of one, two, three, and four 6-deoxyhexose units, respectively; and 539 $[(M-Na)-162-4 \times 146]^-$ and 521 [(M-Na)-180 -4×146]⁻, due to the loss of a carbohydrate chain. The p-configurations of all monosaccharide units of 1 (glucose, fucose, and quinovose) were established by hydrolysis of 1 with 2 M TFA followed by alcoholysis with (R)-(-)-octanol, acetylation, and determination of GC retention times of octyl derivatives according to the procedure of Leontein et al.⁶ All proton and carbon signals attributable to the carbohydrate moiety of 1 were assigned by the application of 1D and 2D NMR experiments including ¹H-¹H COSY, HSQC, TOCSY, HSQC-TOCSY, HMBC, and NOESY (Table 1). The positions of interglycosidic linkages and attachment of the carbohydrate chain to steroidal aglycon were deduced from NOESY and HMBC spectra, where cross-peaks between H-1 of Glc and H-6 (C-6) of the aglycon, H-1 of Qui² and H-3 (C-3) of Glc, H-1 of Qui³ and H-4 (C-4) of Qui³, H-1 of terminal Qui⁴ and C-2 of Qui², and H-1 of terminal Fuc and H-2 (C-2) of Qui³, respectively, were observed.

The NMR data of steroidal aglycon of **1** were shown to be related to those of regularoside A⁵ and differed from **3** only in the substitution of the Me group at C-24 in the side chain on the Et group, that agreed with the molecular mass difference of 14 amu between **1** and **3**. The ¹H, ¹³C NMR and DEPT spectra of **1** (Table 2) revealed proton and carbon signals of two angular Me groups (δ_H 1.00, 0.95; δ_C 13.2, 19.1), a 9(11)-double bond (δ_H 5.26; δ_C 145.6, 116.4), one methine group (δ_H 4.89, δ_C 77.3), bearing a *O*-carbohydrate chain, characteristic for steroidal nucleus of asterosaponins.⁵ The proton and carbon signals of aglycon side chain showed the presence one tertiary Me group (δ_H 1.45, δ_C 23.5), one primary Me group (δ_H 0.95, δ_C 12.2), two secondary Me groups

^b At 125.8 MHz.

^c At 500 MHz. Assignments from ¹H-¹H COSY, HSQC, 1D TOCSY, HSQC-TOCSY, HMBC, and NOESY data.

Table 2 ¹H and ¹³C NMR data^a for aglycon moieties of **1** and **2**

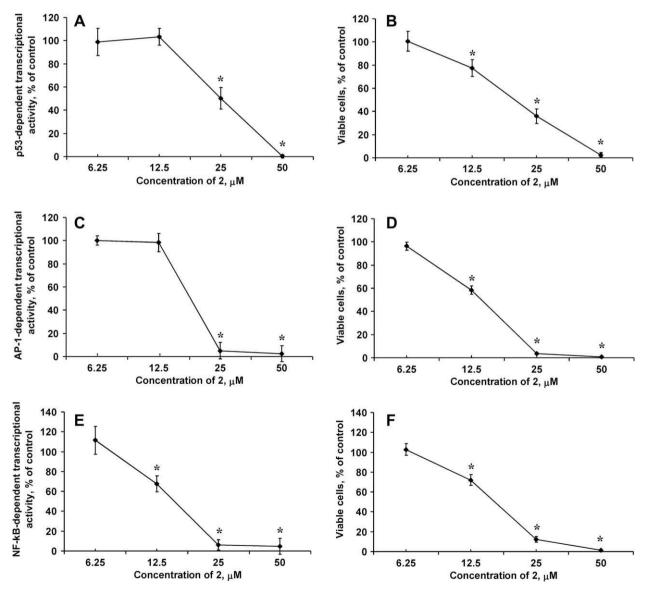
C No.		1	2		
	δ_{C}^{b}	δ _H ^c (J in Hz)	δ_{C}^{b}	δ _H ^c (J in Hz)	
1	35.9	1.66, m	35.9	1.68, m	
		1.41, m		1.41, m	
2	29.4	2.78, m	29.4	2.79, m	
		1.89 m		1.89 m	
3	77.3	4.89, m	77.4	4.89, m	
4	30.7	3.47, m	30.7	3.45, d (11.2)	
		1.70, m		1.70, m	
5	49.2	1.52, m	49.3	1.50, m	
6	80.5	3.81, m	80.2	3.80, dt (4.4, 10.8)	
7	41.3	2.70, m	41.3	2.71, dt (5.0, 12.6)	
		1.25, m		1.29, q (11.5)	
8	35.2	2.06, m	35.0	2.26, m	
9	145.6		145.7		
10	38.2		38.2		
11	116.4	5.26, m	116.5	5.26, d (5.8)	
12	42.2	2.31, m	42.9	2.34, dd (6.4, 16.3)	
		2.09, m		2.00, m	
13	41.7		41.6		
14	53.7	1.19, m	52.0	1.14, m	
15	25.0	1.67, m	38.9	2.46, dt (7.5, 12.7)	
		1.16, m		1.65, m	
16	22.9	1.86, m	73.2	4.87, m	
		2.13, m		,	
17	59.5	1.70, m	60.4	1.38, d (7.0)	
18	13.2	1.00, s	14.8	1.42, s	
19	19.1	0.95, s	19.2	0.97, s	
20	71.2	-1, -	76.0		
21	23.5	1.45, s	26.3	1.47, s	
22	64.6	2.89, d (2.3)	44.7	1.96, m	
23	56.0	2.96, dd (2.2, 8.5)	22.5	1.62, m	
		, (,)		1.48, m	
24	48.4	1.01, m	40.0	1.20, m	
25	29.7	1.88, m	27.9	1.55, m	
26	19.7	0.97, d (6.1)	22.6	0.88, d (6.5)	
27	19.3	0.96, d (6.1)	22.5	0.87, d (6.5)	
28	21.2	1.34, m	_2.0	, (0.0)	
29	12.2	0.95, t (7.8)			

- ^a Measured in C₅D₅N.
- ^b At 125.8 MHz.
- ^c At 500 MHz. Assignments from ¹H-¹H COSY, HSQC, HMBC, and NOESY data.

 $(\delta_{\rm H} \ 0.97, \ 0.96; \ \delta_{\rm C} \ 19.7, \ 19.3)$, and a 22,23-epoxy group $[\delta_{\rm H} \ 2.89 \ (d,$ 2.3), 2.96 (dd, 2.2, 8.5); $\delta_{\rm C}$ 64.6, 56.0]. Based on these data, a 22,23epoxy-24-ethyl-5 α -cholest-9(11)-ene-3 β ,6 α ,20-triol aglycon with glycoside linkage at C-6 and a O-sulfate group at C-3 has been assumed. The 20R-configuration was expected on the basis of the chemical shift of H₃-21 at δ 1.28 (δ 1.28 for 20R- and δ 1.13 for 20S-hydroxy-22,23-epoxysteroids, CD₃OD).^{5,7} The observed NOESY correlations of the side chain protons (Fig. 1) presumed only two variations of the stereochemistry of asymmetric centers C-22, C-23, and C-24 as 22R,23S,24S or 22S,23R,24R from eight possible varieties. Detailed comparison NMR spectra of regularoside A and 1, registered in CD₃OD, showed that the C-17, C-20, C-21, C-22, H₃-21, H-22, and H-23 signals were similar, but C-23, C-24, and C-25 signals were shifted (from δ 58.8 to 57.4, from δ 42.9 to 49.7, and from δ 32.6 to 30.7, respectively) in accordance with γ and β-effects due to the presence of additional methyl group at C-28 in 1.57 We are of the opinion the 20R,22R,23S,24S configuration for 1 are the most preferable by analogy with natural regularoside A, in which the same configuration was ascertained by comparison with model compounds.⁵ Hence, the structure of archasteroside A was elucidated as 1. The new asterosaponin 1 contains a 22,23-epoxy-20-hydroxy-stigmastane side chain never found in other asterosaponins earlier.

The molecular formula of archasteroside B (**2**) was established as $C_{57}H_{95}O_{27}SNa$ from the $[M-Na]^-$ molecular anion at m/z 1243.5796 (calcd for $C_{57}H_{95}O_{27}S$, 1243.5787) in the negative HRESIMS and the $[M+Na]^+$ sodiated-molecular ion at m/z 1289 in

Figure 1. Selected NOESY correlations of the aglycon moiety of archasteroside A (1).


the positive ESIMS. The examination of the NMR spectra and extensive 2D NMR studies of glycosides 2 and 1 indicated that both compounds possess the related pentasaccharide moieties differed in the replacement of the 3-substituted β-D-glucopyranosyl residue at C-6 of aglycon on the 3-substituted β-D-quinovopyranosyl unit (Table 1). The carbon signals of the last monosaccharide matched to those of the 3-substituted β-D-quinovopyranosyl residue from the reported spectra of known asterosaponins.⁵ In the negative ESIMS/MS of the molecular anion at m/z 1243 [M-Na]⁻ a series of fragmentations with the losses of one, two, three, four, and five 6-deoxyhexose units, respectively, at m/z 1097 ($[(M-Na)-146]^-$), 951 ($[(M-Na)-2 \times 146]^-$), 805 ($[(M-Na)-3 \times 146]^-$), 659 ($[(M-Na)-3 \times 146]^-$) $-Na)-4 \times 146]^{-}$), 513 ([(M-Na)-5 × 146]⁻), and 495 ([(M-Na)- $164-4 \times 146$]⁻), were observed. NOESY and HMBC experiments allowed us to establish the positions of the glycosidic linkages and connection of the carbohydrate chain to steroidal aglycon. The cross-peaks between H-1 of Qui¹ and H-6 (C-6) of the aglycon, H-1 of Qui² and H-3 (C-3) of Qui¹, H-1 of Qui³ and H-4 (C-4) of Qui², H-1 of terminal Qui⁴ and C-2 of Qui², and H-1 of terminal Fuc and H-2 (C-2) of Qui³, respectively, were detected. We presumed the D-configuration for all units of fucose and quinovose by analogy with co-occurring asterosaponins 1 and 3.

The ¹H and ¹³C NMR data of aglycon moiety of glycoside **2** were similar to those of glycoside **1** and showed the presence

of the same $\Delta^{9(11)}\text{--}3\beta\text{,}6\alpha\text{--dihydroxy}$ steroidal nucleus with sulfate group linked at C-3, carbohydrate moiety linked at C-6 and 20hydroxy cholestane side chain lacking 22,23-epoxy functionality (Table 2). However, the signals of four carbons C-14, C-15, C-16, C-18, and protons H₃-18 in the NMR spectra of 2 differed from the same signals of 1. The carbon and proton signals of Me-18 were downfield shifted from δ_{C} 13.2 to 14.8 and from δ_{H} 1.00 to 1.42, respectively. Along with the MS data these evidences allowed us to suppose the presence of an additional 16β-hydroxy group located in the ring D. The assignments of the NMR signals associated with aglycon moiety were derived from ¹H-¹H COSY, HSQC, HMBC, and NOESY experiments and coincided with those observed in downeyoside K, the glycoside containing the same (20S)-5 α -cholest-9(11)-en-3 β ,6 α ,16 β ,20-tetraol aglycon, found in the starfish Henricia downeyae.8 The 20S-configuration was assumed on the basis of the NOESY correlation of H-21/H-12 as well as chemical shift of H-21 at δ 1.47, which was consistent with that of known asterosaponins.^{8,9} Thus, the structure of archasteroside B was defined as 2. The carbohydrate moiety of 2 composed only from β-D-fucopyranosyl and β-D-quinovopyranosyl

units is reported in asterosaponins for the first time. The steroidal moiety of ${\bf 2}$ never has been found in asterosaponins because downeyoside K embracing the same steroidal part belongs to other series of steroid glycosides. It possesses the sulfate group at C-6 and β -D-glucuronopyranosyl unit at C-3 of aglycon in contrast with 'classical' asterosaponins which have the sulfate at C-3 and the oligosaccharide moiety at C-6 of aglycon.

The in vitro cytotoxicity of **1–3** was evaluated by 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)-tetrazolium, inner salt (MTS) assay. ¹⁰ The asterosaponins **1, 2,** and **3** demonstrated moderate anticancer activity and showed cytotoxic effects against human cancer HeLa cells with IC₅₀ = 24, 14, and 110 μM, whereas against mouse epidermal JB6 P⁺ Cl41 cells demonstrated cytotoxic effects with IC₅₀ = 37, 18 μM, and **3** was inactive up to 50 μM concentration, respectively. The action of asterosaponin **2**, the most active among the compounds studied, on the basal AP-1-, p53-, and NF-κB-dependent transcriptional activities was also examined using JB6 Cl41 cells stably expressing a luciferase reporter gene controlled by an AP-1, p53, or NF-κB DNA binding sequence. ¹¹ As was shown, after 6 h of incubation

Figure 2. Effects of asterosaponin **2** on the basal p53 (A), AP-1 (C), or NF- κ B (E)—dependent transcriptional activity in JB6 Cl41 mouse epidermal cells evaluated after 6 h of the treatment. Effects of asterosaponin **2** on the viability of JB6 Cl41 p53 (B), AP-1 (D), or NF- κ B (F) cells evaluated after 6 h of the treatment. Data are represented as means ± SD of six samples from two independent experiments. The asterisk (*) indicates a significant distinction (p <0.05) in the nuclear factor activation, or in JB6 Cl41 cells viability compare to control.

with the cells, **2** at 12.5 μ M concentration 1.3 and 1.7 times as much induced basal p53- and AP-1-, but not NF- κ B-dependent transcriptional activities compared to untreated control cells (Fig. 2). To our best knowledge this is the first report about asterosaponins inducing p53- and AP-1-dependent transcriptional activities.

Acknowledgments

Financial support was provided by Program of RAS 'Molecular and Cell Biology' (MCB RAS), Grant 09-04-90308-Viet_a from the RFBR, the Vietnam 01-672/QD-KHCNVN Project, FEB RAS Grants 10-III-B-05-018, 09-III-A-05-146. The authors are grateful to Dr. Do Cong Thung, VAST, for the identification of the starfish.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2010.04.005.

References and notes

- (a) Stonik, V. A.; Ivanchina, N. V.; Kicha, A. A. Nat. Prod. Commun. 2008, 3, 1587;
 (b) Iorizzi, M.; De Marino, S.; Zollo, F. Curr. Org. Chem. 2001, 5, 951.
- (a) Riccio, R.; Squillace Greco, O.; Minale, L.; Laurent, D.; Duhet, D. J. Chem. Soc., Perkin Trans. 1 1986, 665; (b) Riccio, R.; Santaniello, M.; Squillace Greco, O.; Minale, L. J. Chem. Soc., Perkin Trans. 1 1989, 823; (c) Huong, T. T. T.; Truyen, C. Q.; Long, P. Q.; Minh, C. V.; Kicha, A. A.; Ivanchina, N. V.; Kalinovsky, A. I.; Dmitrenok, P. S.; Stonik, V. A. Vietnam J. Chem. 2009, 47, 374.
- (a) Kicha, A. A.; Ivanchina, N. V.; Kalinovsky, A. I.; Dmitrenok, P. S.; Agafonova, I. G.; Stonik, V. A. J. Nat. Prod. 2008, 71, 793; (b) Kicha, A. A.; Ivanchina, N. V.; Kalinovsky, A. I.; Dmitrenok, P. S.; Stonik, V. A. Steroids 2009, 74, 238.

- 4. Extraction and isolation. The fresh animals (7 kg) were chopped and extracted three times with EtOH at 20 °C. The H₂O/EtOH layer was evaporated, and the residue was dissolved in H2O (1 L). The H2O-soluble fraction was passed through a Polychrome 1 column (7 \times 26 cm) and eluted with distilled H₂O until a negative chloride ion reaction was obtained, followed by elution with EtOH. The combined EtOH eluate was evaporated to give a brownish material (29.7 g). The resulting total fraction of steroidal compounds was chromatographed on a Si gel column ($6.5 \times 20 \text{ cm}$) using CHCl₃/EtOH (stepwise gradient, $4:1\rightarrow1:6$) to give fractions 1-9. Fraction 7 (370 mg), containing sulfated polyhydroxysteroids and asterosaponins, was separated on a Florisil column (4×17 cm) using CHCl₃/EtOH (stepwise gradient, $4:1 \rightarrow 1:2$) to give fractions 7.1-7.3. Fraction 7.3 (95 mg), containing mainly asterosaponins, was purified by HPLC on Diasfer-110-C18 column (10 µm, 250×15 mm, 2.5 mL/min) using EtOH/H₂O/1 M NH₄OAc (55:44:1) to give fractions 7.31 ($t_{\rm R}$ 31.5 min) and 7.32 ($t_{\rm R}$ 48.7 min), and pure 1 (4.1 mg, $t_{\rm R}$ 51.1 min, colorless amorphous powder, $[\alpha]_{\rm D}^{20}$ +4.8 (c 0.2, MeOH)). Fraction 7.31 (12 mg) was purified by HPLC on Discovery C18 column (5 μ m, 250 \times 10 mm, 2.5 mL/min) using MeOH/H₂O/1 M NH₄OAc (72:27:1) to yield 3 (2.8 mg, t_R 18.8 min), fraction 7.32 (6 mg) was purified on the same column using MeOH/ $\rm H_2O/1~M~NH_4OAc~(75:24:1)$ to yield **2** (3.7 mg, t_R 17.4 min, colorless amorphous powder, $[\alpha]_D^{2O}$ +9.8 (c 0.3, MeOH)).
- Riccio, R.; Iorizzi, M.; Squillace Greco, O.; Minale, L.; Debray, M.; Menou, J. L. J. Nat. Prod. 1985, 48, 756.
- 6. Leontein, K.; Lindberg, B.; Lönngren, J. Carbohydr. Res. 1978, 62, 359.
- 7. 1 H NMR (aglycon side chain of 2 1, 700 MHz, CD₃OD): 1.28 (s, H₃-21), 2.74 (d, J = 2.3 Hz, H-22), 2.76 (dd, J = 2.4, 8.6 Hz, H-23), 0.90 (m, H-24), 1.87 (m, H-25), 0.95 (d, J = 7.0 Hz, H₃-26), 0.99 (d, J = 7.0 Hz, H₃-27), 1.35 (m, H-28), 1.43 (m, H-28), 0.94 (t, J = 7.5 Hz, H₃-29). 13 C NMR (aglycon side chain of 1 1, 176.0 MHz, CD₃OD): 72.6 (C-20), 23.5 (C-21), 65.5 (C-22), 57.4 (C-23), 49.7 (C-24), 30.7 (C-25), 19.9 (C-26), 19.6 (C-27), 22.1 (C-28), 12.6 (C-29).
- 8. Palagiano, E.; Zollo, F.; Minale, L.; Iorizzi, M.; Bryan, P.; McClintock, J.; Hopkins, T. J. Nat. Prod. **1996**, 59, 348.
- Yang, S. W.; Chan, T. M.; Buevich, A.; Priestley, T.; Crona, J.; Reed, J.; Wright, A. E.; Patel, M.; Gullo, V.; Chen, G.; Pramanik, B.; Chu, M. Bioorg. Med. Chem. Lett. 2007, 17, 5543.
- Barltrop, J. A.; Owen, T. C.; Cory, A. H.; Cory, J. G. Bioorg. Med. Chem. Lett. 1991, 1, 611
- Fedorov, S. N.; Shubina, L. K.; Kicha, A. A.; Ivanchina, N. V.; Kwak, J. Y.; Jin, J. O.;
 Bode, A. M.; Dong, Z.; Stonik, V. A. Nat. Prod. Commun. 2008, 3, 1575.